话说有一天,产品经理突然找到正在摸鱼的你。 产品:『我们要加一个聚合搜索功能,当用户在我们网站查询一件商品时,我们分别从 A、B、C 三个网站上查询这个信息,然后再把得到的结果返回给用户』 你:『哦,就是写个爬虫,从 3 个网站上抓取数据是吧?』 产品:『呸,爬虫是犯法的,这叫数据分析,怎么样,能实现吧?』 你:『可以』 产品:『好的,明天上线』 你:『。。。』
Code 1.0
你很快完成了开发,代码如下:
/* * * * * * * * blog.coder4j.cn * * * Copyright (C) B0A6-B0B0 All Rights Reserved. * * * */ package cn.coder4j.study.example.thread; import cn.hutool.core.thread.ThreadUtil; import com.google.common.collect.Lists; import java.util.List; /** * @author buhao * @version TestCompletionService.java, v 0.A B0B0-0B-A8 A9:0C buhao */ public class TestCompletionService { public static void main(String[] args) { // 查询信息 String queryName = "java"; // 调用查询接口 long startTime = System.currentTimeMillis(); List<String> result = queryInfoCode1(queryName); System.out.println("耗时: " + (System.currentTimeMillis() - startTime)); System.out.println(result); } /** * 聚合查询信息 code 1 * * @param queryName * @return */ private static List<String> queryInfoCode1(String queryName) { List<String> resultList = Lists.newArrayList(); String webA = searchWebA(queryName); resultList.add(webA); String webB = searchWebB(queryName); resultList.add(webB); String webC = searchWebC(queryName); resultList.add(webC); return resultList; } /** * 查询网站 A * * @param name * @return */ public static String searchWebA(String name) { ThreadUtil.sleep(5000); return "webA"; } /** * 查询网站B * * @param name * @return */ public static String searchWebB(String name) { ThreadUtil.sleep(3000); return "webB"; } /** * 查询网站C * * @param name * @return */ public static String searchWebC(String name) { ThreadUtil.sleep(500); return "webC"; } }
你运行了一下代码,结果如下:
耗时: 8512 [webA, webB, webC]
我去,怎么请求一下要8秒多?上线了,产品还不砍死我。
debug 了一下代码,发现问题出在了请求的网站上:
/** * 查询网站 A * * @param name * @return */ public static String searchWebA(String name) { ThreadUtil.sleep(5000); return "webA"; } /** * 查询网站B * * @param name * @return */ public static String searchWebB(String name) { ThreadUtil.sleep(3000); return "webB"; } /** * 查询网站C * * @param name * @return */ public static String searchWebC(String name) { ThreadUtil.sleep(500); return "webC"; }
网站 A、网站 B 因为年久失修,没人维护,接口响应很慢,平均响应时间一个是 5秒,一个是 3秒(这里使用 sleep 模拟)。网站 C 性能还可以,平均响应时间 0.5 秒。而我们程序的执行时间就是 网站A 响应时间 + 网站 B 响应时间 + 网站 C 响应时间。
Code 2.0
好了,问题知道了,因为请求的网站太慢了,那么如何解决呢?总不能打电话找他们把网站优化一下让我爬吧。书上教导我们要先从自己身上找问题。先看看自己代码哪里可以优化。
一分析代码发现,我们的代码全是串行化, A 网站请求完,再请求 B 网站,B 网站请求完再请求 C 网站。突然想到提高效率的第一要义,提高代码的并行率。为什么要一个一个串行请求,而不是 A、B、C 三个网站一起请求呢,Java 的多线程很轻松就可以实现,代码如下:
/* * * * * * * * blog.coder4j.cn * * * Copyright (C) B0A6-B0B0 All Rights Reserved. * * * */ package cn.coder4j.study.example.thread; import cn.hutool.core.thread.ThreadUtil; import com.google.common.collect.Lists; import java.util.List; import java.util.concurrent.ExecutionException; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import java.util.concurrent.Future; /** * @author buhao * @version TestCompletionService.java, v 0.A B0B0-0B-A8 A9:0C buhao */ public class TestCompletionService { public static void main(String[] args) throws ExecutionException, InterruptedException { // 查询信息 String queryName = "java"; // 调用查询接口 long startTime = System.currentTimeMillis(); List<String> result = queryInfoCode2(queryName); System.out.println("耗时: " + (System.currentTimeMillis() - startTime)); System.out.println(result); } /** * 聚合查询信息 code 1 * * @param queryName * @return */ private static List<String> queryInfoCode1(String queryName) { List<String> resultList = Lists.newArrayList(); String webA = searchWebA(queryName); resultList.add(webA); String webB = searchWebB(queryName); resultList.add(webB); String webC = searchWebC(queryName); resultList.add(webC); return resultList; } /** * 聚合查询信息 code 2 * * @param queryName * @return */ private static List<String> queryInfoCode2(String queryName) throws ExecutionException, InterruptedException { List<String> resultList = Lists.newArrayList(); // 创建3个线程的线程池 ExecutorService pool = Executors.newFixedThreadPool(3); try { // 创建任务的 feature Future<String> webAFuture = pool.submit(() -> searchWebA(queryName)); Future<String> webBFuture = pool.submit(() -> searchWebB(queryName)); Future<String> webCFuture = pool.submit(() -> searchWebC(queryName)); // 得到任务结果 resultList.add(webAFuture.get()); resultList.add(webBFuture.get()); resultList.add(webCFuture.get()); } finally { // 关闭线程池 pool.shutdown(); } return resultList; } /** * 查询网站 A * * @param name * @return */ public static String searchWebA(String name) { ThreadUtil.sleep(5000); return "webA"; } /** * 查询网站B * * @param name * @return */ public static String searchWebB(String name) { ThreadUtil.sleep(3000); return "webB"; } /** * 查询网站C * * @param name * @return */ public static String searchWebC(String name) { ThreadUtil.sleep(500); return "webC"; } }
这里的重点代码如下:
/** * 聚合查询信息 code 2 * * @param queryName * @return */ private static List<String> queryInfoCode2(String queryName) throws ExecutionException, InterruptedException { List<String> resultList = Lists.newArrayList(); // 创建3个线程的线程池 ExecutorService pool = Executors.newFixedThreadPool(3); try { // 创建任务的 feature Future<String> webAFuture = pool.submit(() -> searchWebA(queryName)); Future<String> webBFuture = pool.submit(() -> searchWebB(queryName)); Future<String> webCFuture = pool.submit(() -> searchWebC(queryName)); // 得到任务结果 resultList.add(webAFuture.get()); resultList.add(webBFuture.get()); resultList.add(webCFuture.get()); } finally { // 关闭线程池 pool.shutdown(); } return resultList; }
请求网站的代码其实一行没变,变的是我们调用请求方法的地方,把之前串行的代码,变成了多线程的形式,而且还不是普通的多线程的形式,因为我们要在主线程获得线程的结果,所以还要使用 Future 的形式。
好的运行一下代码,看看效果,结果如下:
耗时: 5058 [webA, webB, webC]
嗯,效果明显,从 8 秒多下降到了 5 秒多,但是还是很长,没法接受的长。做为一个有追求的程序员,还要去优化。我们分析一下,刚开始代码是串行的,流程如下,总请求时间是三次请求的总时长。
然后我们优化了一下,把串行请求给并行化,流程如下:
因为是并行化,类似木桶效应,决定最长时间的因素,是你请求中最耗时的的那个操作,这里是时间为 5 秒的请求 A 网站操作。
Code 3.0
其实分析到这里,在不能优化 AB 网站的请求时间的前提下,已经很难优化了。但是方法总比困难多,我们的确没办法再去压缩总请求时间,但是可以让用户体验更好一点,这里需要引入两个技术一个是 Websocket,一个是 **CompletionService。**其中websocket 可以简单的理解成服务端推送技术,就是不需要客户端主动请求,而是通过服务端主动推送消息(ws 在本文中不是重点,会一笔带过。
* * * * * * * blog.coder4j.cn * * * Copyright (C) B0A6-B0B0 All Rights Reserved. * * * */ package cn.coder4j.study.example.thread; import cn.hutool.core.thread.ThreadUtil; import com.google.common.collect.Lists; import java.util.List; import java.util.concurrent.ExecutionException; import java.util.concurrent.ExecutorCompletionService; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import java.util.concurrent.Future; /** * @author buhao * @version TestCompletionService.java, v 0.A B0B0-0B-A8 A9:0C buhao */ public class TestCompletionService { public static void main(String[] args) throws ExecutionException, InterruptedException { // 查询信息 String queryName = "java"; // 调用查询接口 long startTime = System.currentTimeMillis(); queryInfoCode3(queryName); System.out.println("耗时: " + (System.currentTimeMillis() - startTime)); } /** * 聚合查询信息 code 1 * * @param queryName * @return */ private static List<String> queryInfoCode1(String queryName) { List<String> resultList = Lists.newArrayList(); String webA = searchWebA(queryName); resultList.add(webA); String webB = searchWebB(queryName); resultList.add(webB); String webC = searchWebC(queryName); resultList.add(webC); return resultList; } /** * 聚合查询信息 code 2 * * @param queryName * @return */ private static List<String> queryInfoCode2(String queryName) throws ExecutionException, InterruptedException { List<String> resultList = Lists.newArrayList(); // 创建3个线程的线程池 ExecutorService pool = Executors.newFixedThreadPool(3); try { // 创建任务的 feature Future<String> webAFuture = pool.submit(() -> searchWebA(queryName)); Future<String> webBFuture = pool.submit(() -> searchWebB(queryName)); Future<String> webCFuture = pool.submit(() -> searchWebC(queryName)); // 得到任务结果 resultList.add(webAFuture.get()); resultList.add(webBFuture.get()); resultList.add(webCFuture.get()); } finally { // 关闭线程池 pool.shutdown(); } return resultList; } /** * 聚合查询信息 code 3 * * @param queryName * @return */ private static void queryInfoCode3(String queryName) throws ExecutionException, InterruptedException { // 开始时间 long startTime = System.currentTimeMillis(); // 创建 CompletionService ExecutorCompletionService executorCompletionService = new ExecutorCompletionService(Executors.newFixedThreadPool(3)); // 创建任务的 feature executorCompletionService.submit(() -> searchWebA(queryName)); executorCompletionService.submit(() -> searchWebB(queryName)); executorCompletionService.submit(() -> searchWebC(queryName)); for (int i = 0; i < 3; i++) { Future take = executorCompletionService.take(); System.out.println("获得请求结果 -> " + take.get()); System.out.println("通过 ws 推送给客户端,总共耗时" + (System.currentTimeMillis() - startTime)); } } /** * 查询网站 A * * @param name * @return */ public static String searchWebA(String name) { ThreadUtil.sleep(5000); return "webA"; } /** * 查询网站B * * @param name * @return */ public static String searchWebB(String name) { ThreadUtil.sleep(3000); return "webB"; } /** * 查询网站C * * @param name * @return */ public static String searchWebC(String name) { ThreadUtil.sleep(500); return "webC"; } }
核心代码如下:
/** * 聚合查询信息 code 3 * * @param queryName * @return */ private static void queryInfoCode3(String queryName) throws ExecutionException, InterruptedException { // 开始时间 long startTime = System.currentTimeMillis(); // 创建 CompletionService ExecutorCompletionService executorCompletionService = new ExecutorCompletionService(Executors.newFixedThreadPool(3)); // 创建任务的 feature executorCompletionService.submit(() -> searchWebA(queryName)); executorCompletionService.submit(() -> searchWebB(queryName)); executorCompletionService.submit(() -> searchWebC(queryName)); for (int i = 0; i < 3; i++) { Future take = executorCompletionService.take(); System.out.println("获得请求结果 -> " + take.get()); System.out.println("通过 ws 推送给客户端,总共耗时" + (System.currentTimeMillis() - startTime)); } }
先看执行结果:
获得请求结果 -> webC 通过 ws 推送给客户端,总共耗时561 获得请求结果 -> webB 通过 ws 推送给客户端,总共耗时3055 获得请求结果 -> webA 通过 ws 推送给客户端,总共耗时5060 耗时: 5060
我们来分析一下执行结果,首先总耗时时间还是 5 秒多没变,但是我们不是等全部执行完再推送给客户端,而是执行完一个就推送一个,并且发现了一个规律,最先推送的是请求最快的,然后是第二快的,最后推最慢的那一个。也就是说推送结果是有序的。给用户的体验就是点击按钮后,1秒内会展示网站 C 的数据,然后过了2秒又在原有基础上又添加展示了网站 B 数据,又过了2秒,又增加展示了网站 A数据。这种体验要比用户一直白屏 5 秒,然后一下返回所有数据要好的多。
是不是很神奇,这背后的功臣就是 CompletionService,他的源码如下:
package java.util.concurrent; /** * A service that decouples the production of new asynchronous tasks * from the consumption of the results of completed tasks. Producers * {@code submit} tasks for execution. Consumers {@code take} * completed tasks and process their results in the order they * complete. A {@code CompletionService} can for example be used to * manage asynchronous I/O, in which tasks that perform reads are * submitted in one part of a program or system, and then acted upon * in a different part of the program when the reads complete, * possibly in a different order than they were requested. * * <p>Typically, a {@code CompletionService} relies on a separate * {@link Executor} to actually execute the tasks, in which case the * {@code CompletionService} only manages an internal completion * queue. The {@link ExecutorCompletionService} class provides an * implementation of this approach. * * <p>Memory consistency effects: Actions in a thread prior to * submitting a task to a {@code CompletionService} * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a> * actions taken by that task, which in turn <i>happen-before</i> * actions following a successful return from the corresponding {@code take()}. */ public interface CompletionService<V> { /** * Submits a value-returning task for execution and returns a Future * representing the pending results of the task. Upon completion, * this task may be taken or polled. * * @param task the task to submit * @return a Future representing pending completion of the task * @throws RejectedExecutionException if the task cannot be * scheduled for execution * @throws NullPointerException if the task is null */ Future<V> submit(Callable<V> task); /** * Submits a Runnable task for execution and returns a Future * representing that task. Upon completion, this task may be * taken or polled. * * @param task the task to submit * @param result the result to return upon successful completion * @return a Future representing pending completion of the task, * and whose {@code get()} method will return the given * result value upon completion * @throws RejectedExecutionException if the task cannot be * scheduled for execution * @throws NullPointerException if the task is null */ Future<V> submit(Runnable task, V result); /** * Retrieves and removes the Future representing the next * completed task, waiting if none are yet present. * * @return the Future representing the next completed task * @throws InterruptedException if interrupted while waiting */ Future<V> take() throws InterruptedException; /** * Retrieves and removes the Future representing the next * completed task, or {@code null} if none are present. * * @return the Future representing the next completed task, or * {@code null} if none are present */ Future<V> poll(); /** * Retrieves and removes the Future representing the next * completed task, waiting if necessary up to the specified wait * time if none are yet present. * * @param timeout how long to wait before giving up, in units of * {@code unit} * @param unit a {@code TimeUnit} determining how to interpret the * {@code timeout} parameter * @return the Future representing the next completed task or * {@code null} if the specified waiting time elapses * before one is present * @throws InterruptedException if interrupted while waiting */ Future<V> poll(long timeout, TimeUnit unit) throws InterruptedException; }
可以看到 CompletionService 方法,分别如下:
- Futuresubmit(Callabletask);
submit 用于提交一个 Callable 对象,用于提交一个可以获得结果的线程任务
- Futuresubmit(Runnable task, V result);
submit 用于提交一个 Runnable 对象及 result 对象,类似于上面的 submit,但是 runnable 的返回值 void 无法获得线程的结果,所以添加了 result 用于做为参数的桥梁
- Futuretake() throws InterruptedException;
take 用于取出最新的线程执行结果,注意这里是阻塞的
- Futurepoll();
take 用于取出最新的线程执行结果,是非阻塞的,如果没有结果就返回 null
- Futurepoll(long timeout, TimeUnit unit) throws InterruptedException;
同上,只是加了一个超时时间
另外,CompletionService 是接口,无法直接使用,通常使用他的实现类 ExecutorCompletionService,具体使用方法如上面的 demo。
可能看到这里会很好奇 ExecutorCompletionService 实现原理,其实原理很简单,他在内部维护了一个阻塞队列,提交的任务,先执行完的先进入队列,所以你通过 poll 或 take 获得的肯定是最先执行完的任务结果。
转载请注明:学时网 » 线程有序化神器CompletionService