欢迎您光临本小站。希望您在这里可以找到自己想要的信息。。。

大数据之​Hadoop,Spark和Storm分析

大数据云计算 water 3259℃ 0评论

大数据(Big Data)


大数据,官方定义是指那些数据量特别大、数据类别特别复杂的数据集,这种数据集无法用传统的数据库进行存储,管理和处理。大数据的主要特点为数据量大(Volume)数据类别复杂(Variety)数据处理速度快(Velocity)数据真实性高(Veracity),合起来被称为4V。


大数据中的数据量非常巨大,达到了PB级别。而且这庞大的数据之中,不仅仅包括结构化数据(如数字、符号等数据),还包括非结构化数据(如文本、图像、声
音、视频等数据)。这使得大数据的存储,管理和处理很难利用传统的关系型数据库去完成。在大数据之中,有价值的信息往往深藏其中。这就需要对大数据的处理
速度要非常快,才能短时间之内就能从大量的复杂数据之中获取到有价值的信息。在大数据的大量复杂的数据之中,通常不仅仅包含真实的数据,一些虚假的数据也
混杂其中。这就需要在大数据的处理中将虚假的数据剔除,利用真实的数据来分析得出真实的结果。


大数据分析(Big Data Analysis)


大数据,表面上看就是大量复杂的数据,这些数据本身的价值并不高,但是对这些大量复杂的数据进行分析处理后,却能从中提炼出很有价值的信息。对大数据的分析,主要分为五个方面:可视化分析(Analytic
Visualization)
数据挖掘算法(Date
Mining Algorithms)
预测性分析能力(Predictive Analytic
Capabilities)
语义引擎(Semantic
Engines)
数据质量管理(Data Quality
Management)


可视化分析是普通消费者常常可以见到的一种大数据分析结果的表现形式,比如说百度制作的“百度地图春节人口迁徙大数据”就是典型的案例之一。可视化分析将大量复杂的数据自动转化成直观形象的图表,使其能够更加容易的被普通消费者所接受和理解。


数据挖掘算法
大数据分析的理论核心,其本质是一组根据算法事先定义好的数学公式,将收集到的数据作为参数变量带入其中,从而能够从大量复杂的数据中提取到有价值的信
息。著名的“啤酒和尿布”的故事就是数据挖掘算法的经典案例。沃尔玛通过对啤酒和尿布购买数据的分析,挖掘出以前未知的两者间的联系,并利用这种联系,提
升了商品的销量。亚马逊的推荐引擎和谷歌的广告系统都大量使用了数据挖掘算法。


预测性分析能力是大数据分析最重要的应用领域。从大量复杂的数据中挖掘出规律,建立起科学的事件模型,通过将新的数据带入模型,就可以预测未来的事件走向。预测性分析能力常常被应用在金融分析和科学研究领域,用于股票预测或气象预测等。


语义引擎
机器学习的成果之一。过去,计算机对用户输入内容的理解仅仅停留在字符阶段,不能很好的理解输入内容的意思,因此常常不能准确的了解用户的需求。通过对大
量复杂的数据进行分析,让计算机从中自我学习,可以使计算机能够尽量精确的了解用户输入内容的意思,从而把握住用户的需求,提供更好的用户体验。苹果的
Siri和谷歌的Google
Now都采用了语义引擎。


数据质量管理是大数据在企业领域的重要应用。为了保证大数据分析结果的准确性,需要将大数据中不真实的数据剔除掉,保留最准确的数据。这就需要建立有效的数据质量管理系统,分析收集到的大量复杂的数据,挑选出真实有效的数据。


分布式计算(Distributed
Computing)


对于如何处理大数据,计算机科学界有两大方向:第一个方向是集中式计算,就是通过不断增加处理器的数量来增强单个计算机的计算能力,从而提高处理数据的速
度。第二个方向是分布式计算,就是把一组计算机通过网络相互连接组成分散系统,然后将需要处理的大量数据分散成多个部分,交由分散系统内的计算机组同时计
算,最后将这些计算结果合并得到最终的结果。尽管分散系统内的单个计算机的计算能力不强,但是由于每个计算机只计算一部分数据,而且是多台计算机同时计
算,所以就分散系统而言,处理数据的速度会远高于单个计算机。


过去,分布式计算理论比较复杂,技术实现比较困难,因此在处理大数据方面,集中式计算一直是主流解决方案。IBM的大型机就是集中式计算的典型硬件,很多银行和政府机构都用它处理大数据。不过,对于当时的互联网公司来说,IBM的大型机的价格过于昂贵。因此,互联网公司的把研究方向放在了可以使用在廉价计算机上的分布式计算上。


服务器集群(Server
Cluster)


服务器集群是一种提升服务器整体计算能力的解决方案。它是由互相连接在一起的服务器群所组成的一个并行式或分布式系统。服务器集群中的服务器运行同一个计算任务。因此,从外部看,这群服务器表现为一台虚拟的服务器,对外提供统一的服务。


尽管单台服务器的运算能力有限,但是将成百上千的服务器组成服务器集群后,整个系统就具备了强大的运算能力,可以支持大数据分析的运算负荷。Google,Amazon,阿里巴巴的计算中心里的服务器集群都达到了5000台服务器的规模。


大数据的技术基础:MapReduce、Google
File System和BigTable


2003年到2004年间,Google发表了MapReduce、GFS(Google
File System)和BigTable三篇技术论文,提出了一套全新的分布式计算理论。


MapReduce是分布式计算框架,GFS(Google
File System)是分布式文件系统,BigTable是基于Google
File System的
数据存储系统,这三大组件组成了Google的分布式计算模型。


Google的分布式计算模型相比于传统的分布式计算模型有三大优势:首先,它简化了传统的分布式计算理论,降低了技术实现的难度,可以进行实际的应用。
其次,它可以应用在廉价的计算设备上,只需增加计算设备的数量就可以提升整体的计算能力,应用成本十分低廉。最后,它被Google应用在Google的计算中心,取得了很好的效果,有了实际应用的证明。


后来,各家互联网公司开始利用Google的分布式计算模型搭建自己的分布式计算系统,Google的这三篇论文也就成为了大数据时代的技术核心


主流的三大分布式计算系统:Hadoop,Spark和Storm


由于Google没有开源Google分布式计算模型的技术实现,所以其他互联网公司只能根据Google三篇技术论文中的相关原理,搭建自己的分布式计算系统。


Yahoo的工程师Doug Cutting和Mike
Cafarella在2005年合作开发了分布式计算系统Hadoop。后来,Hadoop被贡献给了Apache基金会,成为了Apache基金会的开源项目。Doug
Cutting也成为Apache基金会的主席,主持Hadoop的开发工作。


Hadoop采用MapReduce分布式计算框架,并根据GFS开发了HDFS分布式文件系统,根据BigTable开发了HBase数据存储系统。尽管和Google内部使用的分布式计算系统原理相同,但是Hadoop在运算速度上依然达不到Google论文中的标准。


不过,Hadoop的开源特性使其成为分布式计算系统的事实上的国际标准。Yahoo,Facebook,Amazon以及国内的百度,阿里巴巴等众多互联网公司都以Hadoop为基础搭建自己的分布式计算系统。


Spark也是Apache基金会的开源项目,它由加州大学伯克利分校的实验室开发,是另外一种重要的分布式计算系统。它在Hadoop的基础上进行了一
些架构上的改良。Spark与Hadoop最大的不同点在于,Hadoop使用硬盘来存储数据,而Spark使用内存来存储数据,因此Spark可以提供
超过Hadoop100倍的运算速度。但是,由于内存断电后会丢失数据,Spark不能用于处理需要长期保存的数据。


Storm是Twitter主推的分布式计算系统,它由BackType团队开发,是Apache基金会的孵化项目。它在Hadoop的基础上提供了实时
运算的特性,可以实时的处理大数据流。不同于Hadoop和Spark,Storm不进行数据的收集和存储工作,它直接通过网络实时的接受数据并且实时的
处理数据,然后直接通过网络实时的传回结果。


Hadoop,Spark和Storm是目前最重要的三大分布式计算系统,Hadoop常用于离线的复杂的大数据处理,Spark常用于离线的快速的大数据处理,而Storm常用于在线的实时的大数据处理。

1. Storm是什么,怎么做,如何做的更好?
Storm是一个开源的分布式实时计算系统,它可以简单、可靠地处理大量的数据流。Storm有很多应用场景,如实时分析、在线机器学习、持续计算、分布式RPC、ETL,等等。
Storm支持水平扩展,具有高容错性,保证每个消息都会得到处理,而且处理速度很快(在一个小集群中,每个节点每秒可以处理数以百万计的消息)。
Storm的部署和运维都很便捷,而且更为重要的是可以使用任意编程语言来开发应用。

2. Storm与Spark、Hadoop相比是否有优势?
Storm与Spark、Hadoop这三种框架,各有各的优点,每个框架都有自己的最佳应用场景。
所以,在不同的应用场景下,应该选择不同的框架。

Storm是最佳的流式计算框架,Storm由Java和Clojure写成,Storm的优点是全内存计算,所以它的定位是分布式实时计算系统,按照Storm作者的说法,Storm对于实时计算的意义类似于Hadoop对于批处理的意义。
Storm的适用场景:
1)流数据处理
Storm可以用来处理源源不断流进来的消息,处理之后将结果写入到某个存储中去。
2)分布式RPC。由于Storm的处理组件是分布式的,而且处理延迟极低,所以可以作为一个通用的分布式RPC框架来使用。

SparkSpark是一个基于内存计算的开源集群计算系统,目的是更快速的进行数据分析。Spark由加州伯克利大学AMP实验室Matei为主的小团
队使用Scala开发开发,类似于Hadoop MapReduce的通用并行计算框架,Spark基于Map
Reduce算法实现的分布式计算,拥有Hadoop
MapReduce所具有的优点,但不同于MapReduce的是Job中间输出和结果可以保存在内存中,从而不再需要读写HDFS,因此Spark能更
好地适用于数据挖掘与机器学习等需要迭代的Map Reduce的算法。
Spark的适用场景:
1)多次操作特定数据集的应用场合
Spark是基于内存的迭代计算框架,适用于需要多次操作特定数据集的应用场合。需要反复操作的次数越多,所需读取的数据量越大,受益越大,数据量小但是计算密集度较大的场合,受益就相对较小。
2)粗粒度更新状态的应用
由于RDD的特性,Spark不适用那种异步细粒度更新状态的应用,例如Web服务的存储或者是增量的Web爬虫和索引。就是对于那种增量修改的应用模型不适合。
总的来说Spark的适用面比较广泛且比较通用。

Hadoop是实现了MapReduce的思想,将数据切片计算来处理大量的离线数据数据。Hadoop处理的数据必须是已经存放在HDFS上或者类似HBase的数据库中,所以Hadoop实现的时候是通过移动计算到这些存放数据的机器上来提高效率。
Hadoop的适用场景:
1)海量数据的离线分析处理
2)大规模Web信息搜索
3)数据密集型并行计算

转载请注明:学时网 » 大数据之​Hadoop,Spark和Storm分析

喜欢 (0)or分享 (0)

您必须 登录 才能发表评论!